BASIC
 VOCABULARY REVIEW

$\{65,65,70,75,80,80,85,90,95,100\}$

HISTOGRAM

A frequency plot that shows the number of times a data value or range of data values occurred in a data set.
Typically used for larger data sets and grouped into equal intervals.

Example:

DOT PLOT

A frequency plot that shows the number of times a response occurred in a data set, where each data value is represented by a dot.

Example:

BOXPLOT

A plot showing the 5 -number summary: minimum, maximum, first quartile, median, and third quartile of a data set; the middle 50% of the data is indicated by a box

Quartiles divide a data set into FOUR equal parts. Each quartile contains $\mathbf{2 5 \%}$ of the values in the data set.

Tosumanize: DATA DISPLLAYS

Definition	Advantages	Disadvantages
The BOX PLOT is a standardized way of displaying the distribution of data based on the 5 number summary of the data set.	- Shows 5 number summary - Shows outliers - Easy to compare 2 data sets - Handles large data sets	- Not visually appealing - Cannot tell exact values
A HISTOGRAM is a type of graph that shows the frequency distribution of data within equal intervals.	- Visually strong - Good for determining the shape of the data	- Cannot tell exact values - Difficult to compare 2 data sets
A DOT PLOT is a graphic display using dots and a simple scale to compare the frequency within categories or groups.	- Simple to make - Shows exact values	- Can be time consuming - Have to count to get exact total. (Fractions of units are hard to display.)

COMPARE DISTRIBUTIONS

When you compare two or more data sets, focus on 4 features:

1. Center - Graphically, the center of a distribution is the point where about half of the observations are on either side.
2. Spread - The variability of the data. If the observations cover a wide range, the spread is larger. If the observations are clustered around a single value, the spread is smaller.
3. Shape - The shape of a distribution is described by symmetry, skewness, number of peaks, etc.
4. Unusual features - Unusual features refer to gaps and outliers.

Our Example $\{65,65,70,75,80,80,85,90,95,100\}$

MEASURESOF CENTRRMEASURES OF SRREAD (VARAABILTT)

To Review

Data sets can be compared using measures of center and variability.

Measures of center
 (central tendency)

I. Mean: use to describe the data set when an outlier is NOT present (symmetric data)
2. Median: use When outliers are present (skewed data)
\star The mean and median are both measures intended to be a single number that best represents an entire data set.

Measures of Variability

1. Range: max - min
2. Interquartile Range $(I Q R)=Q 3-Q I$. Used to describe the middle 50% of the data.
3. Mean Absolute Deviation (MAD): takes the average distance of the data points from the mean.
\star The range, IQR, and MAD are both measures intended to summarize the variability of the data using one

MEASURES OF CENTER: MEAN AND MEDIAN

Measures of center (central tendency)

* The mean and median are both measures intended to be a single number that best represents an entire data set.

	Findling the Mean
I.	Find the sum of the
data values.	
2.	Divide the sum by the
number of data points.	
This is the mean.	

Finding the Median
I. First arrange the data from least to greatest.
2. Count the number of data points. If there is an even humber of data points, the median is the average of the two middle-most values. If there is an odd number of data points, the median is the middle-most value.

MEAN

The average value of a data set, found by summing all values and dividing by the number of data points

Example
$\{65,65,70,75,80,80,85,90,95,100\}$

MEDIAN

$\{65,65,70,75,80,80,85,90,95,100\}$

The middle-most value of a data set; 50% of the data is less than this value, and 50% is greater than it

80 is the MEDIAN

MODE

$\{65,65,70,75,80,80,85,90,95,100\}$

-The value that appears the most often in a set of data.

Examole:

MEASURES OF SPREAD (VARIABLLITY) RANGE, IQR, MAD

Measures of Variability

\star The range, IQR, and MAD are both measures intended to summarize the variability of the data using one number.

Finding the Interquartile Range

I. Arrange the data from least to greatest.
2. Find the median of the data set. The median divides the data into two halves: the lower half and the upper half.
3. Find the middle-most value between the min. value and the median. This is the first quartile, Q_{1}.
4. Find the middle-most value between the median and the max value. This is the third quartile, Q_{3}.
5. Calculate the difference between the two quartiles, $Q_{3}-Q_{1}$.

Finding the Mean Absolute Deviation (M.A.D.)
l. Find the mean.
2. Calculate the absolute value of the difference between each data value and the mean.
3. Determine the average of the differences found in step 2. This average is the mean absolute deviation.

RANGE

-The difference between the lowest and the highest value in a set of
stats (L) data.

- Maximum - minimum

Min 65
Q1
Median
$\{65,65,70,75,80,80,85,90,95,100\}$

INTERQUARTILE RANGE (IQR)

$\{65,65,70,75,80,80,85,90,95,100\}$

The difference between the third and first quartiles; 50% of the data is contained within this range

SUBTRACT Q3-Q1

IQR= THIRD QUARTILE - FIRST QUARTILE
median of all data, second quartile
$65,65,70,75,80,80,85,90,95,100$
median of lower part, first quartile
median of upper part, third quartile

FIRST QUARTILE (LOWER)

$\{65,65,70,75,80,80,85,90,95,100\}$

The value that identifies the lower 25% of the data; the median of the lower half of the data set; written as \boldsymbol{Q}_{1} or $\boldsymbol{Q 1}$

median of all data, second quartile
$65,65,70,75,80,80,85,90,95,100$
median of lower part, first quartile
median of upper part, third quartile

THIRD QUARTILE

$\{65,65,70,75,80,80,85,90,95,100\}$

Value that identifies the upper 25% of the data; the median of the upper half of the data set; 75% of all data is less than this value; written as Q_{3} or $\boldsymbol{Q} 3$

MEANABSOLUTEDEVIATION (М.А.О.)
 $\{65,65,70,75,80,80,85,90,95,100\}$

The average

 distance between each data value and the mean. This is a way to describe variability (spread).

Find the distance, each
data value is from the mean
(SUBTRACT \& write as a POSITIVE number.)

Find the mean of the distances calculated in Step 2.

OUTLIER

$\{65,65,70,75,80,80,85,90,95,100\}$

A data value that is much greater than or much less than the rest of the data in a data set; mathematically, any data less than Q1 + 1.5(IQR) or greater than Q3 + $1.5(\mathrm{IQR})$ is an outlier.
$Q_{1}+\mathbf{1 . 5 (I Q R)}$
$Q_{3}+\mathbf{1 . 5 (I Q R)}$

Example:

DESCRIBING: SHAPE

-The shape of a distribution is described by symmetry, number of peaks, direction of skew, or uniformity

Symmetric, Unimodal, Bell-shaped

DESCRIBING SHAPESKEWNESS

- Skewness affects the mean the most. The mean is pulled in the same direction of the tail.
- That is why we use the median when describing the center of skewed data.
- We only use the mean to describe the center of symmetric data.

Mean = Median

Median Mean

DESCRIBING SHAPESKEWED LEFT

-Data which is skewed LEFT will have a left "tail"

Skewed Left

DESCRIBING SHAPESKEWED RIGHT

-Data which is skewed RIGHT will have a right "tail"

DESCRIBING: SHAPE

- Data which is skewed UNIFORM will all look the same. (like a football team where players all have the same UNIFORM on)

Uniform

Rolling Dice

DESCRIBING: SHAPE

- Bimodal \rightarrow "bi" means $2 \rightarrow$ there are 2 mountains
- Symmetric - If I were to cut this in half, both sides would look the same (or close to the same)
- A mirror image

Symmetric, Bimodal

DESCRIBING: SHAPE

- Bimodal \rightarrow "bi" means $2 \rightarrow$ there are 2 mountains
- NOT Symmetric - If I were to cut this in half, each sides would look DIFFERENT (not a mirror image)

UNUSUAL FEATURES: GAPS

- Sometimes, statisticians refer to unusual features in a set of data.
- The two most common unusual features are gaps and outliers.

Kentucky Derby Times

UNUSUAL FEATURES: OUTLIERS

- Sometimes, statisticians refer to unusual features in a set of data.
- The two most common unusual features are gaps and outliers.

To SUMMARIZ: MEASURES O F DATA

EXAMPLE INDESMOS

$\{65,65,70,75,80,80,85,90,95,100\}$

© ${ }^{\text {DISPLAY PR }}$ Zoom Fit ${ }^{1}$

$L=[65,65,70,75,80,80,85,90,95,100]$

$$
L=10 \text { element list }
$$

histogram (L)
Data Set, Bin Width = 1
bAR HEIGHTS ©
bin Alignment

Count	Relative	Density	Center

(4.) $\operatorname{boxplot}(L)$

DISPLAY PROPERTIES
Offset: \qquad Height: 1

$\operatorname{dotplot}(L)$
Data Set, Bin Width = 1

EXAMPLE INDESMOS
 $\{65,65,70,75,80,80,85,90,95,100\}$

ExAMPL INDESMOS

$\{65,65,70,75,80,80,85,90,95,100\}$

