1) REVIEW

https:/I www.loom.com/ 2) MEAN share/642157821f3840 fd9cea270d2bcaf689 ABSOLUTE

 DEVIATION (M.A.D.)

Thoughts on this unit so far? Answer in the chat:

A) I love data and statistics. I could do this stuff all day.
B) I am sooo done with histograms, dot plots, and box plots.
C) Neutral- Don't love don't hate it.
D) I am so lost in this unit. I need help!

To Review

Data sets can be compared using measures of center and variability.

$$
\frac{\text { Measures of Center }}{\text { (central tendency) }}
$$

I. Mean: use to describe the data set when an outlier is NOT present (symmetric data)
2. Median: use when outliers are present (skewed data)
\star The mean and median are both measures intended to be a single number that best represents an entire data set.

Measures of Variability

I. Interquartile Range (IQR) = Q3-QI. Used to describe the middle 50% of the data.
2. Mean Absolute Deviation (MAD): takes the average distance of the data points from the mean.
\star The IQR and MAD are both measures intended to summarize the variability of the data using one number.

Measures of center (central tendency)

\star The mean and median are both measures intended to be a single number that best represents an entire data set.

Findling the Mean	
I.	Find the sum of the
data values.	
2.Divide the sum by the number of data points. This is the mean.${ }^{\text {T }}$.	

Finding the Median
I. First arrange the data from least to greatest.
2. Count the number of data points. If there is an even number of data points, the median is the average of the two middle-most values. If there is an odd number of data points, the median is the middle-most value.

Measures of Variability

\star The IQR and MAD are both measures intended to summarize the variability of the data using one number.

Finding the Interquartile Range
I. Arrange the data from least to greatest.
2. Find the median of the data set. The median divides the data into two halves: the lower half and the upper half.
3. Find the middle-most value between the min. value and the median. This is the first quartile, Q_{1}.
4. Find the middle-most value between the median and the max value. This is the third quartile, Q_{3}.
5. Calculate the difference between the two quartiles, $Q_{3}-Q_{1}$.

Finding the Mean Absolute Deviation (M.A.D.)
I. Find the mean.
2. Calculate the absolute value of the difference between each data value and the mean.
3. Determine the average of the differences found in step 2. This average is the mean absolute deviation.

Mean Absolute Deviation

Learning Target
 How can you use the distances

 between each data value and the mean of a data set to measure the spread of a data set?
Deviation?

The Meaning of a Word Deviate

When you deviate from something,
you stray or depart from the normal course of action.

Example Together

Order	Dollar amount
1	21
2	15
3	22
4	26
5	24
6	21
7	17
8	22

A website captures information about each customer's order. The total dollar amounts of the last 8 orders are listed in the table to the right. left
\mathbb{D} What is the mean absolute deviation of the data (M.A.D.)?

Example Together

Order	Dollar amount
1	21
2	15
3	22
4	26
5	24
6	21
7	17
8	22
-2	

\mathbb{D} What is the mean absolute deviation of the data?
(1) Step 1: Find the mean.

- Find the sum of the data values, and divide the sum by the number of data values.

Example Together

ค

Order	Dollar amount	Mean $=21$
1	21	
2	15	$21-21=0$
3	22	$15-21=\|-6\|=6$
4	$2{ }_{2}$	$22-21=1$
5	24	$26-21=5$
6	21	26-21-5
7	17	24-21-3
8	22	$21-21=0$
$\left\lvert\, \begin{aligned} & 17-21=\|-4\|=4 \\ & 22-21=1 \end{aligned}\right.$		

\mathbb{V} What is the mean absolute deviation of the data?

(2) FIND THE ABSOLUTE DEVIATION FROM THE MEAN

a) Find the difference between each data value and the mean.
b) Take the absolute values of these differences.

Example Together

Order	Dollar amount	
1	21	Mean $=21$
2	15	
3	22	$21-21=0$
4	26	$15-21=\|-6\|=6$
5	24	$22-21=1$
6	21	$26-21=5$
7	17	$24-21=3$
8	22	$21-21=0$
		$\begin{aligned} & 17-21=\|-4\|=4 \\ & 22-21=1 \end{aligned}$

\mathbb{N} What is the mean absolute (2ldeviation of the data?
(3) Find the sum of the absolute values of the differences.

$$
0+6+1+5+3+0+4+1=20
$$

(4) FIND THE MEAN OF THE SUM OF THE ABSOLUTE DEVIATIONS
Divide the sum of the absolute values of the differences by the \# of data values.

$$
\frac{20}{0}=2.5
$$

Example Together

Order	Dollar amount
1	21
2	15
3	22
4	26
5	24
7	21
8	22

Mean Absolute Deviation Is a measure of how far each data point, on average, strays away from the mean of the distribution. It is often written as the acronym "MAD."

I. Enter the heart rate data into L1
2. For L2, calculate L1 - mean(L1). This will give the difference between each data point and the mean of the data set.
3. For $L 3$, calculate $a b \leq(L 2)$. This will give the absolute value of each difference in $L 2$.
4. From the main calculator screen, calculate mean(LS). This will give the mean absolute deviation for the data set.

WHAT DO YOU THINK?

$\mathbb{\Delta}$ A) You M.A.D. bro?
$\mathbb{\mathbb { N }}$ B) This is M.A.D. easy!

Example Together

Order	Dollar amount
1	21
2	15
3	22
4	26
5	24
6	21
7	17
8	22

+		\%	
	$A=[0,0,1,1,1,1,2,2,2,2,2,3,3,3,4,4,5,5,6] \times$		
		$A=19$ element list	
	stats (A)		x
		Min	0
		Q1	1
		Median	
		Q3	4
		Max	6
(\%)	$\operatorname{mad}(A)$		\times
		$=1.39058171745$	
	$\operatorname{stdev}(A)$		x
		= 1.711673029	
(\%)	mean (A)		\times
		$=2.47368421053$	
	median (A)		\times
			$=2$

\mathbb{D} What is the mean absolute deviation of the data? OR............

Desmos

(ㅁ) $\operatorname{mad}(A)$
$=1.39058171745$

To Summarize

So what's the point of all this?

We use measures of variability, such as range, IQR, and the mean absolute deviation to help us describe the SPREAD of data.

SMALLER VARIABILITY

To Summarize

So what's the point of all this?

We use measures of variability, such as range, IQR, and the mean absolute deviation to help us describe the SPREAD of data.

SMALLER VARIABILITY

LARGER VARIABILITY
IQR and/or M.A.D. are smaller
\rightarrow Data is considered closer
together
IQR and/or M.A.D. are larger \rightarrow Data is considered more spread out

